Latest News

Computer architecture paradigms

Computer architecture paradigms

 

There are many types of computer architectures:
The quantum computer architecture holds the most promise to revolutionize computing.[50]
Logic gates are a common abstraction which can apply to most of the above digital or analog paradigms.
The ability to store and execute lists of instructions called programs makes computers extremely versatile, distinguishing them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a minimum capability (being Turing-complete) is, in principle, capable of performing the same tasks that any other computer can perform. Therefore any type of computer (netbook, supercomputer, cellular automaton, etc.) is able to perform the same computational tasks, given enough time and storage capacity.

 

Misconceptions

 

A computer does not need to be electronic, nor even have a processor, nor RAM, nor even a hard disk. While popular usage of the word "computer" is synonymous with a personal computer, the definition of a computer is literally "A device that computes, especially a programmable [usually] electronic machine that performs high-speed mathematical or logical operations or that assembles, stores, correlates, or otherwise processes information."[51] Any device which processes information qualifies as a computer, especially if the processing is purposeful.

Required technology

 

Historically, computers evolved from mechanical computers and eventually from vacuum tubes to transistors. However, conceptually computational systems as flexible as a personal computer can be built out of almost anything. For example, a computer can be made out of billiard balls (billiard ball computer); an oft-quoted example. More realistically, modern computers are made out of transistors made of photolithographed semiconductors.
There is active research to make computers out of many promising new types of technology, such as optical computers, DNA computers, neural computers, and quantum computers. Some of these have been shown as being capable of tackling problems that modern computers cannot (such as how quantum computers can break some modern encryption algorithms by quantum factoring).[citation needed]

 

Further topics

 


Artificial intelligence

 

A computer will solve problems in exactly the way it is programmed to, without regard to efficiency, alternative solutions, possible shortcuts, or possible errors in the code. Computer programs that learn and adapt are part of the emerging field of artificial intelligence and machine learning.

No comments:

Post a Comment

CCSW Designed by Templateism.com Copyright © 2014

Theme images by Bim. Powered by Blogger.